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ABSTRACT

The steady-state zonally averaged climate is perturbed by adding a latitude-dependent heat source to an
energy balance equation of the simplified Budyko-Seilers type. The latitude of the ice edge, which is
attached to an isotherm, becomes dependent on the strength of the perturbation. This dependence is given
in terms of the well-known iceline-solar constant relation, and the latitude dependence of the perturbed
temperature field is then uniquely determined. The exact analytical solution is linearized and expressed
in terms of a superposition of line sources at various latitudes. The main features are: 1) The total tem-
perature response is a sum of the direct effect of the perturbation and an indirect ice-albedo effect propor-
tional to the solar ice-edge sensitivity; and 2) the indirect feedback effect produces an enhanced response

in polar latitudes.

1. Introduction

Most sensitivity studies with energy balance
models have been concerned with the sensitivity of
the model climate to solar constant changes. A small
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fractional change in the solar constant dQ/Q induces
a change in the steady-state global average tempera-
ture dT, for which one may define the sensitivity
parameter :
g = 2L

aQ/Q

which depends on the various feedback mechanisms
employed by the model. This provides a measure of
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sensitivity to any global-scale perturbation. How-
ever, in many instances we wish to know the sen-
sitivity to more localized perturbations such as
anthropogenic waste heating rates (Washington,
1972). Moreover, we may want information on the
magnitude of the response at different latitudes.
For example, several studies have shown a pro-
nounced enhancement in polar latitudes of the
steady-state thermal response to changes in CO,
(e.g., Manabe and Wetherald, 1975). It is clear that
the spatial distribution of sensitivity can be as impor-
tant as the overall magnitude.

In this note we extend the analytical theory given
by Cahalan and North (1979, hereafter referred to as
CN) to the question of the climatic response to
localized perturbations. The models considered are
of the Budyko-Sellers type (Budyko, 1968, 1969;
Sellers, 1969). The various assumptions and limita-
tions of these models have been much discussed
(see, e.g., Warren and Schneider, 1979). Although
many effects are poorly represented in such simple
models, their tractability allows causal relation-
ships to be determined explicitly, and these provide
guides for experimentation in more realistic models
(Schneider and Dickinson, 1974). The single spatial
variable retained here is the sine of the latitude x
and hemispheric symmetry is assumed so that it is
sufficient to consider Northern Hemisphere values,
0 < x = 1. Further details of our notation and
method of solution are given in CN and are sum-
marized here in the Appendix.

An important feature of Budyko-Sellers models is
the enhancement of B, associated with ice-albedo
feedback. An increase in the solar constant, S, = 40,
not only increases the incident energy, but also
shrinks the icecap, and both effects contribute to an
increase in T,. Models in which the edge of the ice-
cap is attached to a given isotherm may be solved

“analytically (North, 1975a,b). The sine of the ice-
edge latitude is found to be a multivalued function
of the solar constant, x;, = x,(Q). Its slope, the
ice-edge sensitivity .

dx;
Bs _dQ/Q s

determines the temperature sensitivity 3, as well as
the stability of the steady-state climate (CN). We
shall see that it also plays an important role in de-
termining the spatial distribution of climate sensitiv-
ity in these models. .

In the remainder of this section we describe the
type of perturbation considered, preview our main
results, and describe the spatial distribution of sen-
sitivity in general terms. Section 2 contains the de-
tailed derivations. Section 3 concludes with a brief
discussion.

Since our emphasis here is on spatially distributed

(1.2)
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perturbations, the solar constant will be held fixed
at its present value Q = Q,. A positive distribution
of heat satisfying

u(x) =0, (1.3a)

and

r dxu(x) =1, (1.3b)

0
will be added to the energy balance with strength g
(equally in both hemispheres). This steady-state
problem is soluble by the same methods as the un-
perturbed case (g = 0), and the ice edge is now a
multivalued function of the strength of heating,
xs = xQo; g), with the stability determined by the
slope dx,/dg. The ice edge may of course be adjusted
to the same latitude either by tuning Q with g fixed,
as in the unperturbed case, or by tuning g with Q
fixed, as here. Thus, the functions x;(Q,; g) may be
expressed in terms of previously tabulated values

-of x,(Q; 0). The slope dx,/dg is found to be directly

proportional to B;, and the constant of propor-
tionality is largest when u(x) is most concentrated
near the ice edge. This confirms our intuitive notion
that a model sensitive to changes in Q will also be
sensitive to other perturbations.

Increases in g increase the heating both directly
in the u (x) source, and indirectly in the solar absorp-
tion due to the ice edge shift. Due to the nonlinear
feedback the temperature response is generally non-
linear is g, and is also generally not given by the sum
effect of each latitude strip alone. However, for
small g the ice edge shift is also small, and it has the
effect of an additional heat source localized in the
region of the ice edge and superimposed on the direct
effect of g. This localized feedback effect gives a
sensitivity or ‘‘response function’’ which peaks at
the ice edge, even when the u(x) perturbation itself
is uniform.

For readers not wishing to indulge in the detailed
derivation of the following section, the main features
of the temperature response may be summarized
schematically:

Total response Direct response
per unit heat added = in the absence of
to a given latitude  ice-albedofeedback

Indirect response
+ duetoalbedo change
multiplied by g,.

1.4

The direct response peaks at the latitude of the
source, and dies off smoothly over some character-
istic distance. Physically this falloff is due to the fact
that a significant fraction of heat is lost by infrared
radiation during the time it takes to transport it, so
that heat sources produce a response over some
limited effective range. Since albedo changes occur
primarily where snow and ice melt, the indirect
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response peaks in that region. When the source is
smoothly distributed, the peak in the direct response
-is also smoothed, but the peak in the indirect re-
sponse is enhanced since heat from each latitude
increases the albedo change in the ice-edge region.

2. Perturbed solutions and latitude-dependent sen-
sitivity
The class of models which we consider are de-
fined by the energy-balance equation

L[T)(x) + A(x) = OS(x)a(x,xs) + gu(x), (2.1)
or its equivalent integral form
T(x) = J dyGolx,y)
0
X [@S(Wa(y.xs) + gu(y) — AW 2.2)

Here L is a homogeneous linear operator associated.

with horizontal and vertical (infrared radiation) heat
transport and G is its inverse, satisfying.

LGo(x,y) = 8(x — y). 2.3)

The boundary conditions are zero horizontal heat
flux at the equator (x = 0) and pole (x = 1). The
function A(x) represents the inhomogeneous part
of the heat transport; Q is the solar constant divided
by four; S(x) is the normalized mean annual dis-
tribution of incident solar flux; a(x,x;) is the co-
albedo, which is temperature-dependent due to the
ice-edge condition,

Tx)=T,, . 2.4

and gu(x) is the perturbation, satisfying (1.3a) and
(1.3b). A particularly simple example of this type of
model is that of North (1975a,b). That model has
horizontal diffusion with a constant coefficient,
Budyko’s linear infrared rule, and a coalbedo having
.one constant value over ice-covered regions and a
higher constant value over ice-free regions, chang-
ing discontinuously at x = x;. We first solve the
general problem, linearize and then illustrate results
for the North model.

Evaluating (2.2) at x = x; and using (2.4), we

obtain
T, = Q(Sa), + glu); — (A), 2.5)
where the notation '
f)s = J dyGo(xe,y)f () (2.6)
0

has been used. In principle (2.5) determines the ice
edge as a function of Q and g, i.e., x; = x,(Q; g).
The ‘‘present climate’’ is defined as that for which
g = 0and Q = Q,, and the model must be tuned to
the present ice edge, so that x,(Qq; 0) = x,. In previ-
ous studies Q has been varied with g = 0, in which
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case (2.5) can be solved for Q(x;). Its inverse x;(Q; 0)

‘has a well-known multivalued form with icecaps

larger than a certain critical size being unstable, as
shown by negative values of the slope, ;. In the
present case we hold @ = Q, and vary g, so that
(2.5) can be solved for g(x,;). The g = 0 problem
and the Q = @, problem can be related by equating
the corresponding expressions for T,. When this is
done the (A), terms cancel, so that

Q(Sa); = Qo(Sa), + g(u)s. 2.7

This expresses the fact that a given ice-cdge latitude
may be obtained either by tuning Q with g = 0, or
by tuning g with O = Q. Although the two resulting
temperature fields are equal at the ice edge, they -
are generally unequal at other latitudes.

From (2.7) the function g(x,) can be determined
from previously tabulated values of Q(x,) for any
chosen perturbation u(x). Its inverse, x(Qo; g), -
determines the possible ice-edge latitudes corre-
sponding to a given g, which in turn specifies the
coalbedo'on the right side of (2.2), so that the per-
turbed solution is given formally by

To(x) = J dyGolx ) QeS (Nay xs(Qo: 2))

0
+gu(y) —A@). (2.8)
It can be shown that this solution is stable if and
only if -
. dx;
dg

For stable solutions, then, an increase in g shrinks -
the icecap and adds to the warming produced by the
u distribution.

Because of the nonlinear ice-albedo feedback, the
effect of a sum of perturbations, say, u = uy + u,,
is not generally given by adding the effect of each
one along, T? # T, + T,. If g is sufficiently small,
however, then (2.8) can be linearized. In that case
the temperature field responds independently to the
heat added in each latitude belt. This approxima-
tion should hold for anthropogenic heat, presently
about 10~* times the total absorbed solar energy.
As discussed below, the importance of the nonlinear
terms also depends on the proximity of the perturba-
tion to the ice edge, so that the linear approximation
also requires that heat sources not be located too
near to x,. We set :

= 0.

2.9)

Xs = Xo T+ axs,
T = TO + 8T,

2.10)
@.11)

where 6x, and 8T are the deviation from the *‘present
climate’” (g = 0) values given by xoand 7“. We may
determine 87 to first order in g by expanding (2.7)
and (2.8) to first order in &x, and combining the
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resulting expressions. Using the notation of (1.2)
for the iceline sensitivity evaluated at x,, we have
Q — Qo = (Q4/B:)0xs. The terms in parentheses in
(2.7) can be evaluated at x,, so that

u  Bs
Oy = — g + O(g?.
T Qo (Sa)
If this expression is inserted into the first-order term
in the expansion of the coalbedo in (2.8), and the
integration variable in (), is interchanged with y in
that term, the result can be written in the form

2.12)

8T(x) = gj G u(y) + Og", @.13)

0
where G is given by
, ! Oa
G(x,y) = Golx,y)+ U dzGo(x,2)8(2) — (z,xO)]
’ 0 0x¢
(Sa)

By setting u(y) = 8(y — x,) in (2.13) it can be seen
that G(x,x,) represents the temperature response

X

Go(xo,y). (2.14)

at x due to a unit of heat added at x,. The integration -

in (2.13) just adds up the independent responses
due to the heat in each latitude belt. Incidently,
Eq. (2.12) proves that dx,/dg has the same sign as
Bsnearg = 0, and hence the stability Corollary (2.9).
The argument is easily extended to finite g.

Eq. (2.14) is the result described schematically in
(1.4). G, is the direct response due to transport
alone. The indirect response, the second term in
(2.14), may be interpreted beginning at the extreme
right as follows: heat from y is transported to x,,
shifting the ice edge by an amount proportional to
BsGo(xe,¥), so that more heat is added at all latitudes
where the coalbedo changes, and this heat is trans-
ported to x, producing additional responses Gy(x,z)
for each unit of heat added at each z. Superposition
of the direct and indirect responses gives the total
response. ,

Now we specialize (2.14) to the North model.
When the coalbedo is a simple stepfunction, a small
shift in the ice edge changes the absorption only at
Z = xq, SO that ’

da

— (2,x0) = Aad(z — x),

9x,
where Aa is the discontinuity at the ice edge. Now
the integral in (2.14) is easily done. If we. also use
Budyko’s infrared rule, it can be shown that

Bs A +BT0> B?
(Sa)o B A + BT,

We set A = 203.3 Wm™2, B = 2.09 W m~2 (North
and Coakley, 1979) and choose Ty = 15°C and T,

S(Xo)Aa

- (5-
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FiG. 1. Latitude-dependent sensitivity (i.e., stationary response
function) G(x,x,) computed using diffusive transport, Budyko’s
linear infrared parameterization, and an isothermal ice cap edge at
xo = 0.9. The two cases shown are for heat perturbations at 23.5°
latitude (x, = 0.4) and at 45° latitude (x, = 0.7). In both cases
additional heat is absorbed in the ice edge region, the amount
being related by Eq. (2.15) to the global temperature sensitivity
Bo (here 1.6°C per 1% change in solar constant) and to the proxim-
ity of the perturbation to the ice edge.

= —10°C. Then for the North model (2.14) simpli-
fies to

GP(x,y) = GB(x,y) + GB(x,x,) (M>

42°C

X G8(xy,y). (2.15)

Here G§(x,y) is the diffusive response function,
and as discussed in CN, it is positive and peaks
where the heat is added, at x = y. These two physi-
cally reasonable properties are not special to dif-
fusive transport, but hold much more generally. The
total response given by (2.15) is plotted in Fig. 1
for the case 8, = 1.6°C per 1% dQ/Q and x, = 0.9,
with heat added at 23.5° (x; = 0.4) and at 45° (x,
= 0.7). Like G¥, G? also peaks where the heat is
added, but it has a second peak at the ice edge,
x = xg, due to the additional absorption there. Note
that tropical heating produces a relatively smaller
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Fi1G. 2. Latitude of the ice cap edge x; as a function of the per-
turbation strength g, with the solar constant fixed at its present
value. As in Fig. 1, results are shown both for a tropical perturba-
tion (x, = 0.4) and a midlatitude perturbation (x, = 0.7). In both
cases the unperturbed climate is assumed to have x, = x, = 0.9.
The tangent at x, is a good approximation for x; when g is small,
but for larger g the response is nonlinear. Solutions with dx,/dg
< 0 are unstable.

response over the ice, while middlie latitude heating
produces an amplified effect over the ice. In general,
the temperature response given by (2.13) is most
" concentrated in the neighborhood of the ice edge
when the perturbation u is also concentrated there.
However, even for a uniform perturbation, having
u = 1, while the diffusive transport alone produces
a uniform response, given by g [ dyGY = g/B, the
total response is given by the integral of (2.15):

B() - 112°C
42°C

This is still largest at the ice edge. Here we have an
example of a purely global perturbation having a
localized response due to the localized character
of the feedback.

For large values of g the linear response given by
(2.13) becomes invalid, and the temperature change
must be found from (2.8), using the ice-edge func-
tion x,(Q,; g) determined from (2.7). In Fig. 2 we
show this function for the same parameters and per-
turbations as in Fig. 1. Note that the slopeatg = 0,
which is proportional to the ice-edge sensitivity of
the present climate [Eq. (2.12)], is larger for the mid-
latitude perturbation (x, = 0.7) than for the tropical
one (x, = 0.4). Mathematically this is because the
d.x, associated with a source at x, is proportional to
(1) = Golxe,x1), Which is largest when x, is closest

ST(x) | e =%[G{,’(x,xo) + 1] . (2.16)
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to xo. Physically the ice-edge shift is smaller for a
more distant source due to the increased fraction of
heat lost to space during the time it takes to transport
it. Also, note from Fig. 2 that the range of g for which

" the linear approximation remains accurate is smaller

when the source is nearer to the ice edge. This is
also related to the larger éx;, which causes the non-
linear terms in (2.7) to become important at smaller
values of g. (See also Salmun, 1979.)

We now consider the sensitivity of the main fea-
tures of Figs. 1 and 2 to the particular model chosen.
First, most models give values of B, from 0.5 to
2.5°C per 1% dQ/Q. Our choice is about average.
The uncertainty in B, contributes an uncertainty
of perhaps a factor of 2 to the magnitude of the re-
sponse at high latitudes. Second, long-term mean
meridional heat transport behaves diffusively only
for the largest spatial scales. Presumably smaller
scale variations would not qualitatively change the
falloff in the response to a steady local change in
forcing. In this case the inclusion of other transport
mechanisms would not eliminate the high-iatitude
enhancement. Finally, the response function has
been greatly simplified by the unrealistic step-
function albedo. Actually, the step has been some-
what smoothed out because G, has been computed
using a finite mode expansion. As more modes are
included the step sharpens and the peaks shown in
Fig. 1 evolve into sharp cusps. We have also tested
the effect of linearly smoothing the albedo around
x,. When the smoothing width becomes compa-
rable to the effective range of the heat transport
(~0.1 for the parameters used in Fig. 1) the cusp at
the ice edge again becomes a smooth peak. Smooth-
ing the albedo sufficiently also removes the negative
slope region near x; = 1 in Fig. 2, so that small
icecaps become stable (CN). Despite its strong de-
pendence on the albedo parameterization, the sen-
sitivity appears simply as a multiplying factor of the
indirect response, and can be fixed independently
of the change in albedo with the ice edge.

Despite the unrealistic simplicity of the particular
model chosen here, it exhibits interesting behavior
in the heat sink (negative g) region in Fig. 2. The ice
edge is lowered to x; = 0.7 if a heat sink having a
global average strength of —5 W m~2 is placed at x,
= 0.7, while the same result requires more than
twice the strength if the sink is placed at x, = 0.4.
Once the ice expands below x; = 0.7, however, it
becomes much more sensitive to the low-latitude
sink. In fact, for a heat sink of —12 W m™2, no stable
steady state (other than x; = 0) is found with the
low-latitude sink, while the same strength sink in
midlatitudes produces a stable climate with nearly
50% ice coverage. These numbers certainly are not
intended to be taken seriously, but they show how
misleading it can be to extrapolate present climate
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sensitivities to much different climates. The re-
sistance to total glaciation is not simply related to
the ice-edge sensitivity even in our naive example.

3. Discussion

“We have determined the steady-state solutions to
climate models of the Budyko-Sellers type, general-
ized to include a.latitude-dependent perturbation.
The latitude of the ice-cap edge is a nonlinear
multivalued function of the perturbation strength,
whose slope, the ice edge sensitivity, becomes
negative whenever the icecap is unstable. For small
perturbations, the temperature relative to the
present climate is given in terms of a response func-
tion, a generalization of the sensitivity parameter
having spatial dependence.

Our response function for the simplest icecap
models increases poleward with a peak at the icecap
edge. This finding generally agrees with the Manabe
and Wetherald (1975) result which also shows a small
peak at ~70° latitude —their icecap edge. This is a
pleasant surprise since the Manabe-Wetherald
model employs many other feedback mechanisms
as well as ice feedback.
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APPENDIX
List of Symbols?

A that part of the heat transport which is

inhomogeneous in temperature

coalbedo of the earth-atmosphere system

global temperature sensitivity —steady-
state change in T, due to a small frac-
tional change in solar constant; 3, refers
to a change in x, rather than T,

local temperature sensitivity —steady-
state change in 7 due to a small
localized change in heating: G is also

% Annual, vertical, and zonal averages are assumed.
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referred to as the stationary tempera-
ture response function; G, is the tem-
perature response in the absence of ice-
albedo feedback
particular forms of G and G, for the dif-
fusive model of North (1975a,b)
g global average of the heat perturbation
L homogeneous linear operator associated
with infrared radiation and horizontal
heat transport

G?, GOD

g, O solar constant divided by four; Q, is the
present value

S distribution of incident solar flux, nor-
malized to have unit global average

T global average temperature

T, T, local temperature distribution; 7 is the
temperature at x = x;

T9, 8T perturbed temperature distribution; 87 is

the deviation from the unperturbed
distribution, 87 = 79 — T©®
u distribution of added heat, normalized to
have unit global average
sine of the latitude; at the latitude of the
ice edge x = x;, and x, is the present
value of x;. ’

Xy Xsy Xo
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